benzani onjiniyela

Yini eyenziwa yi-AI Engineers?

Wake wazibuza ukuthi yini ecashile ngemuva kwegama elithi “AI Engineer”? Nami ngenzile. Ngaphandle kuzwakala kucwebezela, kodwa empeleni kuwumsebenzi wokuklama izingxenye ezilinganayo, ukuqophisana kwedatha engcolile, ukuhlanganisa amasistimu, kanye nokuhlola ngokweqile ukuthi izinto zenza lokho okufanele zikwenze. Uma ufuna inguqulo yomugqa owodwa: baguqula izinkinga ezilufifi zibe amasistimu e-AI asebenzayo angawi lapho abasebenzisi bangempela bevela. Uma kuthatha isikhathi eside, kunesiphithiphithi esithe xaxa - kuhle, lokho kungezansi. Thatha i-caffeine. ☕

Izindatshana ongathanda ukuzifunda ngemva kwalesi:

🔗 Amathuluzi e-AI onjiniyela: Ukuthuthukisa ukusebenza kahle nokuqamba izinto ezintsha
Zitholele amathuluzi anamandla e-AI athuthukisa ukukhiqiza nobunjiniyela bobunjiniyela.

🔗 Ngabe onjiniyela besoftware bazothathelwa indawo yi-AI?
Hlola ikusasa lobunjiniyela besofthiwe enkathini yokuzenzakalela.

🔗 Izicelo zobunjiniyela bezimboni zokuguqula ubuhlakani bokwenziwa
Funda ukuthi i-AI ilungisa kanjani kabusha izinqubo zezimboni kanye nokushayela okusha.

🔗 Ungaba kanjani unjiniyela we-AI
Umhlahlandlela wesinyathelo ngesinyathelo ukuze uqale uhambo lwakho olubheke emsebenzini wobunjiniyela be-AI.


Ukuthatha ngokushesha: lokho okwenziwa unjiniyela we-AI ngempela 💡

Ezingeni elilula, unjiniyela we-AI uklama, akhe, athumele futhi anakekele amasistimu e-AI. Usuku nosuku luvame ukubandakanya:

  • Ukuhumusha umkhiqizo ongacacile noma izidingo zebhizinisi zibe okuthile okungasingathwa amamodeli.

  • Ukuqoqa, ukulebula, ukuhlanza, futhi - nakanjani - ukuhlola kabusha idatha lapho iqala ukukhukhuleka.

  • Ukukhetha nokuqeqesha amamodeli, ukuwahlulela ngamamethrikhi alungile, nokubhala phansi lapho azohluleka khona.

  • Ukugoqa yonke into kumapayipi we-MLOps ukuze ihlolwe, isetshenziswe, ibonwe.

  • Ukuyibuka endle: ukunemba, ukuphepha, ukulunga… kanye nokulungisa ngaphambi kokuthi iphambuke.

Uma ucabanga ukuthi “ngakho-ke kuwubunjiniyela besofthiwe kanye nesayensi yedatha enokufafaza kokucabanga komkhiqizo” - yebo, lokho kumayelana nokuma kwayo.


Yini ehlukanisa abahle kwabanye ✅

Ungazi lonke iphepha lezakhiwo ezishicilelwe kusukela ngo-2017 futhi usakha ukungcola okuntekenteke. Abantu abaphumelelayo endimeni ngokuvamile:

  • Cabanga ngezinhlelo. Babona yonke i-loop: idatha ngaphakathi, izinqumo eziphumayo, yonke into elandelekayo.

  • Ungajahi umlingo kuqala. Izisekelo kanye nokuhlola okulula ngaphambi kobunzima bokupakisha.

  • Bhaka ngempendulo. Ukuqeqesha kabusha nokubuyisela emuva akukona okungeziwe, kuyingxenye yomklamo.

  • Bhala phansi izinto. Ukuhwebelana, ukuqagela, ukulinganiselwa - kuyisicefe, kodwa igolide kamuva.

  • Phatha i-AI enesibopho ngokungathi sína. Izingozi azishabalali ngokuba nethemba, ziyangena futhi ziphathwe.

Indaba encane: Ithimba elilodwa labasekeli liqale ngemithetho eyisimungulu+isisekelo sokuthola. Lokho kubanikeze izivivinyo ezicacile zokwamukela, ngakho lapho beshintshana ngemodeli enkulu kamuva, baba nokuqhathanisa okuhlanzekile - kanye nokubuyela emuva okulula lapho beziphatha kabi.


Umjikelezo wempilo: okungokoqobo okungcolile uma kuqhathaniswa nemidwebo ehlanzekile 🔁

  1. Hlela inkinga. Chaza imigomo, imisebenzi, nokuthi "okwanele ngokwanele" kubukeka kanjani.

  2. Yenza ukugaya idatha. Hlanza, ilebula, hlukanisa, inguqulo. Qinisekisa ngokungapheli ukuze ubambe ukukhukhuleka kwe-schema.

  3. Isivivinyo samamodeli. Zama izisekelo ezilula, zokuhlola, ukuphindaphinda, idokhumenti.

  4. Ithumele. Amapayipi e-CI/CD/CT, ukuthunyelwa okuphephile, ama-canaries, ukubuyisela emuva.

  5. Hlala ubukele. Gada ukunemba, ukubambezeleka, ukukhukhuleka, ukulunga, imiphumela yomsebenzisi. Bese uziqeqeshe kabusha.

Kusilayidi lokhu kubukeka njengendilinga ecocekile. Ngokwenza lokho kufana nokujuxuza ispaghetti ngomshanelo.


I-AI enesibopho lapho irabha ishaya umgwaqo 🧭

Akukona mayelana namadekhi amaslayidi amahle. Onjiniyela bancike ezinhlelweni zokwenza ubungozi bube ngokoqobo:

  • I -NIST AI RMF inikeza ukwakheka kokubona, ukulinganisa, nokusingatha izingozi kuyo yonke imiklamo ngokuthumela [1].

  • Izimiso ze-OECD zisebenza njengekhampasi - imihlahlandlela ebanzi ama-orgs amaningi ahambisana [2].

Inqwaba yamaqembu iphinde idale izinhlu zawo zokuhlola (izibuyekezo zobumfihlo, amasango e-human-in-loop) afakwe kumephu kule mijikelezo yokuphila.


Amadokhumenti azizwa engazikhetheli: Amakhadi Emodeli NamaDashishi Edatha 📝

Iziqephu ezimbili zamaphepha ozozibonga ngawo kamuva:

  • Amakhadi Emodeli → chaza ukusetshenziswa okuhlosiwe, izimo ezijwayelekile, izixwayiso. Ibhalwe ukuze umkhiqizo/abantu bezomthetho bakwazi ukulandela nabo [3].

  • Ama-Datasheets Amasethi Edatha → chaza ukuthi kungani idatha ikhona, yini ekuyo, ukuchema okungenzeka, kanye nokusebenzisa okuphephile uma kuqhathaniswa nokungaphephile [4].

I-Future-wena (kanye nozakwabo weqembu elizayo) bayokugxeka buthule ngokukubhala kwabo.


I-Deep Dive: amapayipi edatha, izinkontileka, nenguqulo 🧹📦

Idatha iba ngokungalawuleki. Onjiniyela be-Smart AI baphoqelela izinkontileka, bhaka amasheke, futhi bagcine izinguqulo ziboshelwe kukhodi ukuze ukwazi ukuhlehlisa ngokuhamba kwesikhathi.

  • Ukuqinisekisa → codify schema, ububanzi, ubusha; khiqiza amadokhumenti ngokuzenzakalelayo.

  • Inguqulo → hlela amasethi edatha namamodeli anezibopho ze-Git, ngakho-ke unelogi yoshintsho ongayethemba ngempela.

Isibonelo esincane: Umthengisi oyedwa osheleleyo uyahlola ukuze avimbe okuphakelayo kwabahlinzeki okugcwele ama-null. Leyo tripwire eyodwa imise ukwehla okuphindaphindiwe ku-recall@k ngaphambi kokuthi amakhasimende abone.


Ukujula ngokujulile: ukuthumela nokukala 🚢

Ukuthola imodeli esebenza ku-prod akuyona nje i-model.fit() . Ibhande lamathuluzi lapha lihlanganisa:

  • I-Docker yokupakishwa okungaguquki.

  • I-Kubernetes ye-orchestration, ukukala, nokukhishwa okuphephile.

  • Izinhlaka ze-MLOps zama-canaries, ukuhlukaniswa kwe-A/B, ukutholwa kwangaphandle.

Ngemuva kwekhethini kuhlolwa impilo, ukulandelela, ukuhlela i-CPU vs GPU, ukushuna ukuphela kwesikhathi. Ayibukhazikhazi, iyadingeka ngokuphelele.


I-Deep Dive: Amasistimu we-GenAI ne-RAG 🧠📚

Amasistimu okukhiqiza aletha enye i-twist - ukubuyisela ukubuyisela.

  • Ukushumeka + sesha i-vector ukuze uthole ukufana okufanayo ngesivinini.

  • ye-orchestration yokuqoqa uchungechunge, ukusetshenziswa kwamathuluzi, ukucubungula ngemuva.

Izinketho ekuhlukaniseni, ukubeka kabusha isikhundla, eval - lezi zingcingo ezincane zinquma ukuthi uthola yini i-chatbot engaqondakali noma umshayeli ohamba naye owusizo.


Amakhono namathuluzi: yini ngempela ekustaki 🧰

Isikhwama esixubile se-ML yakudala kanye negiya lokufunda elijulile:

  • Izinhlaka: I-PyTorch, i-TensorFlow, i-scikit-learn.

  • Amapayipi: Ukugeleza komoya, njll., okwemisebenzi ehleliwe.

  • Ukukhiqizwa: I-Docker, i-K8s, izinhlaka zokuhlinzeka.

  • Ukubonwa: ama-drift monitors, ama-latency trackers, amasheke okulunga.

Akekho umuntu osebenzisa yonke into . Iqhinga liwukwazi ngokwanele kuwo wonke umjikelezo wokuphila ukuze ucabange ngendlela enengqondo.


Ithebula lamathuluzi: lokho onjiniyela abafinyelela kukho ngempela 🧪

Ithuluzi Izilaleli Inani Kungani kuwusizo
I-PyTorch Abacwaningi, onjiniyela Umthombo ovulekile Flexible, pythonic, umphakathi omkhulu, amanetha ngokwezifiso.
I-TensorFlow Amaqembu ancike emikhiqizweni Umthombo ovulekile Ukujula kwe-Ecosystem, i-TF Serving & Lite ukuze kusetshenziswe.
scikit-funda Abasebenzisi be-Classic ML Umthombo ovulekile Izisekelo ezinhle, i-API ehlelekile, ukucubungula kwangaphambili kubhakwe ngaphakathi.
I-MLflow Amaqembu anezilingo eziningi Umthombo ovulekile Igcina ukugijima, amamodeli, ama-artifacts ahlelekile.
Ukungena komoya Ipayipi bakwethu Umthombo ovulekile Ama-DAG, ukuhlela, ukubonakala kuhle ngokwanele.
I-Docker Ngokuyisisekelo wonke umuntu Ingqikithi yamahhala Indawo efanayo (ikakhulukazi). Izimpi ezimbalwa "ezisebenza kuphela kukhompuyutha yami ephathekayo".
Kubernetes Amaqembu e-Infra-heavy Umthombo ovulekile Ukukala okuzenzakalelayo, ukukhishwa, imisipha yezinga lebhizinisi.
Imodeli esebenza kuma-K8s Abasebenzisi bemodeli ye-K8s Umthombo ovulekile Ukuphakelwa okujwayelekile, izingwegwe zokukhukhuleka, ziyakaleka.
Imitapo yolwazi yokusesha iVector Abakhi be-RAG Umthombo ovulekile Ukufana okusheshayo, i-GPU-friendly.
Izitolo zama-vector eziphethwe Amaqembu e-RAG yebhizinisi Izigaba ezikhokhelwayo Izinkomba ezingenaseva, ukuhlunga, ukwethembeka esikalini.

Yebo, umusho uzizwa ungalingani. Izinketho zamathuluzi ngokuvamile zinjalo.


Ukulinganisa impumelelo ngaphandle kokucwila ngezinombolo 📏

Amamethrikhi abalulekile ancike kumongo, kodwa ngokuvamile inhlanganisela yokuthi:

  • Ikhwalithi yokubikezela: ukunemba, ukukhumbula, F1, ukulinganisa.

  • Isistimu + yomsebenzisi: ukubambezeleka, i-p95/p99, i-conversion lift, amanani okuqedwa.

  • Izinkomba zokulunga: ukulingana, umthelela ongafani - zisetshenziswe ngokucophelela [1][2].

Amamethrikhi akhona ukuze ahwebe phezulu. Uma zingakwenzi, zishintshe.


Amaphethini okuhlanganyela: umdlalo weqembu 🧑🤝🧑

Onjiniyela be-AI bavame ukuhlala ezimpambanweni zomgwaqo:

  • Abantu bomkhiqizo nesizinda (chaza impumelelo, ama-guardrails).

  • Onjiniyela bedatha (imithombo, izikimu, ama-SLA).

  • Ezokuphepha/ngokomthetho (ubumfihlo, ukuhambisana).

  • Idizayini/ucwaningo (ukuhlolwa komsebenzisi, isb. kwe-GenAI).

  • I-Ops/SRE (isikhathi sokusebenza kanye nezivivinyo zomlilo).

Lindela amabhodi amhlophe ambozwe ngokubhala kanye nezinkulumo mpikiswano ezishisayo zemethrikhi - kunempilo.


Izingibe: ixhaphozi lesikweletu sobuchwepheshe 🧨

Amasistimu e-ML aheha isikweletu esifihliwe: ukucushwa okuphithene, ukuncika okuntekenteke, imibhalo yeglue ekhohliwe. Ochwepheshe bamisa ama-guardrails - ukuhlolwa kwedatha, ukucushwa okuthayiphiwe, ukubuyisela emuva - ngaphambi kokuba ixhaphozi likhule. [5]


Abagcini benhlanzeko: imikhuba esiza 📚

  • Qala kancane. Qinisekisa ukuthi ipayipi liyasebenza ngaphambi kokuhlanganisa amamodeli.

  • Amapayipi we-MLOps. I-CI yedatha/amamodeli, i-CD yezinsizakalo, i-CT yokuqeqeshwa kabusha.

  • Uhlu lokuhlola lwe-AI olunesibopho. Kufakwe imephu kunhlangano yakho, namadokhumenti afana namamodeli Amakhadi Nama-Datasheets [1][3][4].


Yenza kabusha i-FAQ esheshayo: impendulo yomusho owodwa 🥡

Onjiniyela be-AI bakha amasistimu okuphela-kuya-ekupheleni awusizo, ahlolekayo, asebenzisekayo, futhi aphephe ngandlela-thile - kuyilapho benza ukuhweba kube sobala ukuze kungabikho muntu osebumnyameni.


TL;DR 🎯

  • Bathatha izinkinga ezingacacile → amasistimu e-AI athembekile ngomsebenzi wedatha, ukumodela, ama-MLOps, ukuqapha.

  • Okungcono kakhulu kugcine kulula kuqala, linganisela ngokungaphezi, futhi ubhale okuqagelayo.

  • Ukukhiqiza i-AI = amapayipi + izimiso (CI/CD/CT, ubulungisa lapho kudingeka, ukucabanga engcupheni kubhakiwe).

  • Amathuluzi angamathuluzi nje. Sebenzisa ubuncane obukuyisa esitimeleni → ithrekhi → hambisa → bheka.


Izixhumanisi eziyisethenjwa

  1. I-NIST AI RMF (1.0). Isixhumanisi

  2. Izimiso ze-OECD AI. Isixhumanisi

  3. Amakhadi Emodeli (u-Mitchell et al., 2019). Isixhumanisi

  4. Ama-Datasheets for Datasets (Gebru et al., 2018/2021). Isixhumanisi

  5. Isikweletu Esifihliwe Sobuchwepheshe (Sculley et al., 2015). Isixhumanisi


Thola i-AI yakamuva esitolo esisemthethweni somsizi we-AI

Mayelana NATHI

Buyela kubhulogi