I-AI ayiwona nje amamodeli agqamile noma abasizi abakhulumayo abalingisa abantu. Ngemuva kwakho konke lokho, kunentaba - kwesinye isikhathi ulwandle - lwedatha. Futhi ngokweqiniso, ukugcina leyo datha? Kulapho izinto zivame ukumosha khona. Kungakhathaliseki ukuthi ukhuluma ngamapayipi okubona isithombe noma ukuqeqesha amamodeli olimi amakhulu, izimfuneko zokugcina idatha ze-AI zingaphuma ekulawuleni ngokushesha uma ungacabangisisi kahle. Ake sihlukanise ukuthi kungani isitoreji siyisilwane esinjalo, yiziphi izinketho ezisetafuleni, nokuthi ungazihlanganisa kanjani izindleko, isivinini, nesikali ngaphandle kokuvutha.
Izindatshana ongathanda ukuzifunda ngemva kwalesi:
🔗 Isayensi yedatha kanye nobuhlakani bokwenziwa: Ikusasa lokuqamba izinto ezintsha
Ukuhlola ukuthi i-AI nesayensi yedatha iqhuba kanjani ukuqanjwa kwesimanjemanje.
🔗 I-Artificial liquid intelligence: Ikusasa le-AI kanye nedatha enwetshiwe
Ukubheka idatha ye-AI ehlukaniselwe amandla kanye nezinto ezintsha ezisafufusa.
🔗 Ukuphathwa kwedatha yamathuluzi e-AI okufanele ukubheke
Amasu abalulekile okuthuthukisa ukugcinwa kwedatha ye-AI nokusebenza kahle.
🔗 Amathuluzi angcono kakhulu e-AI abahlaziyi bedatha: Thuthukisa ukwenziwa kwezinqumo zokuhlaziya
Amathuluzi aphezulu e-AI athuthukisa ukuhlaziya idatha nokwenza izinqumo.
Ngakho… Yini Eyenza Isitoreji Sedatha ye-AI Sibe Luhle? ✅
Akuwona nje “ama-terabyte amaningi.” Isitoreji sangempela esilungele i-AI simayelana nokusebenziseka, ukwethembeka, nokushesha ngokwanele kukho kokubili ukugijima kokuqeqeshwa kanye nomthwalo wokukhomba.
Izimpawu ezimbalwa okufanele uziqaphele:
-
I-Scalability : Yeqa ukusuka kuma-GB uye kuma-PB ngaphandle kokubhala kabusha i-architecture yakho.
-
Ukusebenza : Ukubambezeleka okuphezulu kuzolambisa ama-GPU; abaxoleli ukuhluleka.
-
Ukuphelelwa umsebenzi : Izifinyezo, ukuphindaphinda, ukwenza inguqulo - ngoba ukuhlolwa kuyaphuka, nabantu bayaphuka.
-
Ukusebenza kahle kwezindleko : Isigaba esifanele, isikhathi esifanele; uma kungenjalo, umthethosivivinywa uyanyonyoba njengokuhlolwa kwentela.
-
Ukuba seduze nokubala : Beka isitoreji eduze kwama-GPU/TPU noma ubuke ukulethwa kwedatha kuminyanisa.
Uma kungenjalo, kufana nokuzama ukusebenzisa i-Ferrari kuphethiloli womshini wokusika utshani - ngobuchwepheshe iyahamba, kodwa hhayi isikhathi eside.
Ithebula Lokuqhathanisa: Izinketho Zesitoreji Ezivamile ze-AI
Uhlobo Lwesitoreji | I-Fit engcono kakhulu | Izindleko ze-Ballpark | Kungani Isebenza (noma Ayisebenzi) |
---|---|---|---|
Isitoreji Sento Yefu | Ama-Startups nama-ops amaphakathi | $$ (okuguquguqukayo) | Iguquguqukayo, ihlala isikhathi eside, ilungele amachibi edatha; qaphela izinkokhelo ze-egress + amahithi wesicelo. |
Emagcekeni e-NAS | Ama-orgs amakhulu anamaqembu e-IT | $$$$ | Ukubambezeleka okubikezelwayo, ukulawula okugcwele; i-capex yangaphambili + izindleko ze-ops eziqhubekayo. |
I-Hybrid Cloud | Ukuthobela-ukusethwa okunzima | $$$ | Ihlanganisa isivinini sendawo nefu elinwebekayo; i-orchestration yengeza ikhanda. |
I-All-Flash Arrays | Abacwaningi abagxile kakhulu | $$$$$ | I-IOPS/umphumela osheshayo ohlekisayo; kodwa i-TCO ayiyona ihlaya. |
Amasistimu Efayela Asabalalisiwe | Amaqoqo e-AI devs / HPC | $$–$$$ | I-Parallel I/O esikalini esibucayi (Lustre, Spectrum Scale); ops umthwalo ungokoqobo. |
Kungani Izidingo Zedatha ye-AI Ziqhuma 🚀
I-AI ayigcini nje ngokuqongelela izithombe ozishuthe zona. Kuyadla.
-
Amasethi okuqeqesha : I-ILSVRC yodwa ye-ImageNet amaphakethe angu-~1.2M wezithombe ezinelebula, kanye nenkampani eqondene nesizinda esithile ihamba ngale kwalokho [1].
-
Ukwenza inguqulo : Yonke i-tweak - amalebula, ukuhlukana, isandiso - kudala elinye "iqiniso."
-
Okokufaka kokusakaza bukhoma : Ukubona bukhoma, i-telemetry, izifunzo zezinzwa… i-firehose engashintshi.
-
Amafomethi Angahlelekile : Umbhalo, ividiyo, umsindo, amalogi - ngendlela enkulu kunamathebula e-SQL ahlanzekile.
Yi-buffet ongayidla, futhi imodeli ihlala ibuya ukuze uthole uphudingi.
Cloud vs On-Premises: Impikiswano Engapheli 🌩️🏢
Ifu libukeka lilinga: eduze-elingapheli, umhlaba wonke, khokha njengoba uhamba. Kuze kube yilapho i-invoyisi yakho ikhombisa izindleko zokuphuma - futhi ngokuzumayo indawo yakho yokugcina "eshibhile" ibiza imbangi yemali esetshenziswayo [2].
Ngakolunye uhlangothi, i-on-prem, inikeza ukulawula nokusebenza okuqinile, kodwa futhi ukhokhela ihadiwe, amandla, ukupholisa, kanye nabantu ukuze bagcine izingane.
Amaqembu amaningi ahlala phakathi nendawo engcolile: okuxubile . Gcina idatha eshisayo, ezwelayo, ephuma phambili eduze nama-GPU, futhi ufake kungobo yomlando yonke eminye kuma-cloud tiers.
Izindleko Zokugcina Eziyeqa 💸
Umthamo ungqimba olungaphezulu nje. Izindleko ezifihliwe ziyanqwabelana:
-
Ukuhanjiswa kwedatha : Amakhophi ezindawo ezihlukene, ukudluliswa kwamafu, ngisho nokuphuma komsebenzisi [2].
-
I-redundancy : Ukulandela i-3-2-1 (amakhophi amathathu, imidiya emibili, eyodwa ngaphandle kwesayithi) kudla isikhala kodwa konga usuku [3].
-
Amandla nokupholisa : Uma kuyirack yakho, inkinga yakho yokushisa.
-
I-latency trade-offs : Izigaba ezishibhile ngokuvamile zisho isivinini sokubuyisela iqhwa.
Ukuphepha Nokuthobelana: Abanqamuli Bezivumelwano Ezithulile 🔒
Imithethonqubo ingasho ngokoqobo ukuthi amabhayithi ahlala kuphi. Ngaphansi kwe -UK GDPR , ukususa idatha yomuntu siqu e-UK kudinga imizila yokudlulisa esemthethweni (ama-SCC, ama-IDTA, noma imithetho yokufaneleka). Ukuhumusha: idizayini yakho yesitoreji kufanele "yazi" indawo [5].
Izinto eziyisisekelo ongazibhaka kusukela ngosuku lokuqala:
-
Ukubethela - kokubili ukuphumula nokuhamba.
-
Ukufinyelela okuyilungelo elincane + nemikhondo yokuhlola.
-
Susa ukuvikela njengokungaguquki noma ukukhiya into.
Amabhodlela Okusebenza: Ukubambezeleka Kungumbulali Othule ⚡
Ama-GPU awathandi ukulinda. Uma isitoreji sibambezeleka, ama-heaters akhazinyulisiwe. Amathuluzi afana ne -NVIDIA GPUDirect Storage asika i-CPU middleman, ishutha idatha iqonde isuka ku-NVMe iye kwimemori ye-GPU - lokho kanye okufiswa ukuqeqeshwa kwenqwaba enkulu [4].
Ukulungiswa okujwayelekile:
-
I-NVMe all-flash yamashadi okuqeqesha ashisayo.
-
Amasistimu wefayela ahambisanayo (i-Lustre, i-Spectrum Scale) yokuphuma kwamanodi amaningi.
-
Izilayishi ze-Async ezine-sharding + ukulanda kuqala ukuze kuvinjwe ama-GPU ukuthi angenzi lutho.
Izinyathelo Ezisebenzayo Zokuphatha Isitoreji Se-AI 🛠️
-
I-Tiering : Amashadi ashisayo ku-NVMe/SSD; gcina kungobo yomlando amasethi akudala ezinto noma izigaba ezibandayo.
-
I-Dedup + delta : Gcina izisekelo kanye, gcina kuphela ama-diffs + manifests.
-
Imithetho ye-Lifecycle : I-auto-tier kanye nemiphumela emidala ephelelwa yisikhathi [2].
-
Ukuqina kwe-3-2-1 : Njalo gcina amakhophi amaningi, kuyo yonke imidiya ehlukene, neyodwa eyodwa [3].
-
Amathuluzi : Ithrekhi yokuphuma, ukubambezeleka kwe-p95/p99, ukufundwa okuhlulekile, ukuphuma ngomthwalo womsebenzi.
Ikesi Elisheshayo (Elenziwe Kodwa Elivamile) 📚
Ithimba lombono liqala nge-~20 TB endaweni yokubeka into yamafu. Kamuva, baqala ukwenza amasethi edatha ezifundeni zonkana ukuze kuhlolwe. Izindleko zabo ibhaluni - hhayi kusuka kwisitoreji ngokwayo, kodwa kusukela ku-egress traffic . Bashintsha ama-hot shards baye ku-NVMe eduze kweqoqo le-GPU, bagcine ikhophi ye-canonical endaweni yokulondoloza into (ngemithetho yomjikelezo wempilo), futhi baphine kuphela amasampula abawadingayo. Umphumela: Ama-GPU amatasa kakhulu, izikweletu ziyancipha, futhi ukuhlanzeka kwedatha kuyathuthuka.
Ukuhlela Umthamo Osemuva Kwemvilophu 🧮
Ifomula enzima yokulinganisa:
Amandla ≈ (I-Raw Dataset) × (I-Replication Factor) + (Idatha Esetshenzwe ngaphambili / Eyengeziwe) + (Izindawo Zokuhlola + Amalogi) + (Imajini Yokuphepha ~15–30%)
Bese ingqondo ibheka ngokumelene nokuphuma. Uma izilayishi ze-node ngayinye zidinga u-~2–4 GB/s ukusekelwa, ubheka i-NVMe noma i-FS efanayo ukuze uthole izindlela ezishisayo, nokugcinwa kwento njengeqiniso eliyisisekelo.
Akukona nje Ngesikhala 📊
Uma abantu bethi izidingo zesitoreji se-AI , bafanekisela ama-terabytes noma ama-petabytes. Kodwa iqhinga langempela liwukulinganisela: izindleko uma ziqhathaniswa nokusebenza, ukuguquguquka ngokumelene nokuhambisana, ukusungula izinto ezintsha ngokumelene nokuzinza. Idatha ye-AI ayinciphi nganoma yisiphi isikhathi maduze. Amaqembu ahlanganisa isitoreji ekwakhekeni kwamamodeli kusenesikhathi agwema ukuminza emaxhaphozini edatha - futhi agcina eseziqeqeshe ngokushesha, nawo.
Izithenjwa
[1] URussakovsky et al. I-ImageNet Enkulu Yesikali Esibonakalayo Esiyinselelo Yokuqashelwa (IJCV) — isikali sedathasethi kanye nenselelo. Xhumanisa
[2] AWS — Intengo ye-Amazon S3 nezindleko (ukudluliswa kwedatha, i-egress, ama-lifecycle tiers). Xhumanisa
[3] CISA — 3-2-1 umthetho wokusekela ngomthetho iseluleko. Xhuma
[4] NVIDIA Amadokhumenti — Uhlolojikelele lwesitoreji se-GPUDirect. Xhumanisa
[5] ICO — Imithetho ye-GDPR yase-UK mayelana nokudluliswa kwedatha yamazwe ngamazwe. Isixhumanisi