izimfuneko zokugcina idatha ze-AI

Izidingo Zokugcinwa Kwedatha ze-AI: Okudingayo Ngempela Ukukwazi

I-AI ayiwona nje amamodeli agqamile noma abasizi abakhulumayo abalingisa abantu. Ngemuva kwakho konke lokho, kunentaba - kwesinye isikhathi ulwandle - lwedatha. Futhi ngokweqiniso, ukugcina leyo datha? Kulapho izinto zivame ukumosha khona. Kungakhathaliseki ukuthi ukhuluma ngamapayipi okubona isithombe noma ukuqeqesha amamodeli olimi amakhulu, izimfuneko zokugcina idatha ze-AI zingaphuma ekulawuleni ngokushesha uma ungacabangisisi kahle. Ake sihlukanise ukuthi kungani isitoreji siyisilwane esinjalo, yiziphi izinketho ezisetafuleni, nokuthi ungazihlanganisa kanjani izindleko, isivinini, nesikali ngaphandle kokuvutha.

Izindatshana ongathanda ukuzifunda ngemva kwalesi:

🔗 Isayensi yedatha kanye nobuhlakani bokwenziwa: Ikusasa lokuqamba izinto ezintsha
Ukuhlola ukuthi i-AI nesayensi yedatha iqhuba kanjani ukuqanjwa kwesimanjemanje.

🔗 I-Artificial liquid intelligence: Ikusasa le-AI kanye nedatha enwetshiwe
Ukubheka idatha ye-AI ehlukaniselwe amandla kanye nezinto ezintsha ezisafufusa.

🔗 Ukuphathwa kwedatha yamathuluzi e-AI okufanele ukubheke
Amasu abalulekile okuthuthukisa ukugcinwa kwedatha ye-AI nokusebenza kahle.

🔗 Amathuluzi angcono kakhulu e-AI abahlaziyi bedatha: Thuthukisa ukwenziwa kwezinqumo zokuhlaziya
Amathuluzi aphezulu e-AI athuthukisa ukuhlaziya idatha nokwenza izinqumo.


Ngakho… Yini Eyenza Isitoreji Sedatha ye-AI Sibe Luhle? ✅

Akuwona nje “ama-terabyte amaningi.” Isitoreji sangempela esilungele i-AI simayelana nokusebenziseka, ukwethembeka, nokushesha ngokwanele kukho kokubili ukugijima kokuqeqeshwa kanye nomthwalo wokukhomba.

Izimpawu ezimbalwa okufanele uziqaphele:

  • I-Scalability : Yeqa ukusuka kuma-GB uye kuma-PB ngaphandle kokubhala kabusha i-architecture yakho.

  • Ukusebenza : Ukubambezeleka okuphezulu kuzolambisa ama-GPU; abaxoleli ukuhluleka.

  • Ukuphelelwa umsebenzi : Izifinyezo, ukuphindaphinda, ukwenza inguqulo - ngoba ukuhlolwa kuyaphuka, nabantu bayaphuka.

  • Ukusebenza kahle kwezindleko : Isigaba esifanele, isikhathi esifanele; uma kungenjalo, umthethosivivinywa uyanyonyoba njengokuhlolwa kwentela.

  • Ukuba seduze nokubala : Beka isitoreji eduze kwama-GPU/TPU noma ubuke ukulethwa kwedatha kuminyanisa.

Uma kungenjalo, kufana nokuzama ukusebenzisa i-Ferrari kuphethiloli womshini wokusika utshani - ngobuchwepheshe iyahamba, kodwa hhayi isikhathi eside.


Ithebula Lokuqhathanisa: Izinketho Zesitoreji Ezivamile ze-AI

Uhlobo Lwesitoreji I-Fit engcono kakhulu Izindleko ze-Ballpark Kungani Isebenza (noma Ayisebenzi)
Isitoreji Sento Yefu Ama-Startups nama-ops amaphakathi $$ (okuguquguqukayo) Iguquguqukayo, ihlala isikhathi eside, ilungele amachibi edatha; qaphela izinkokhelo ze-egress + amahithi wesicelo.
Emagcekeni e-NAS Ama-orgs amakhulu anamaqembu e-IT $$$$ Ukubambezeleka okubikezelwayo, ukulawula okugcwele; i-capex yangaphambili + izindleko ze-ops eziqhubekayo.
I-Hybrid Cloud Ukuthobela-ukusethwa okunzima $$$ Ihlanganisa isivinini sendawo nefu elinwebekayo; i-orchestration yengeza ikhanda.
I-All-Flash Arrays Abacwaningi abagxile kakhulu $$$$$ I-IOPS/umphumela osheshayo ohlekisayo; kodwa i-TCO ayiyona ihlaya.
Amasistimu Efayela Asabalalisiwe Amaqoqo e-AI devs / HPC $$–$$$ I-Parallel I/O esikalini esibucayi (Lustre, Spectrum Scale); ops umthwalo ungokoqobo.

Kungani Izidingo Zedatha ye-AI Ziqhuma 🚀

I-AI ayigcini nje ngokuqongelela izithombe ozishuthe zona. Kuyadla.

  • Amasethi okuqeqesha : I-ILSVRC yodwa ye-ImageNet amaphakethe angu-~1.2M wezithombe ezinelebula, kanye nenkampani eqondene nesizinda esithile ihamba ngale kwalokho [1].

  • Ukwenza inguqulo : Yonke i-tweak - amalebula, ukuhlukana, isandiso - kudala elinye "iqiniso."

  • Okokufaka kokusakaza bukhoma : Ukubona bukhoma, i-telemetry, izifunzo zezinzwa… i-firehose engashintshi.

  • Amafomethi Angahlelekile : Umbhalo, ividiyo, umsindo, amalogi - ngendlela enkulu kunamathebula e-SQL ahlanzekile.

Yi-buffet ongayidla, futhi imodeli ihlala ibuya ukuze uthole uphudingi.


Cloud vs On-Premises: Impikiswano Engapheli 🌩️🏢

Ifu libukeka lilinga: eduze-elingapheli, umhlaba wonke, khokha njengoba uhamba. Kuze kube yilapho i-invoyisi yakho ikhombisa izindleko zokuphuma - futhi ngokuzumayo indawo yakho yokugcina "eshibhile" ibiza imbangi yemali esetshenziswayo [2].

Ngakolunye uhlangothi, i-on-prem, inikeza ukulawula nokusebenza okuqinile, kodwa futhi ukhokhela ihadiwe, amandla, ukupholisa, kanye nabantu ukuze bagcine izingane.

Amaqembu amaningi ahlala phakathi nendawo engcolile: okuxubile . Gcina idatha eshisayo, ezwelayo, ephuma phambili eduze nama-GPU, futhi ufake kungobo yomlando yonke eminye kuma-cloud tiers.


Izindleko Zokugcina Eziyeqa 💸

Umthamo ungqimba olungaphezulu nje. Izindleko ezifihliwe ziyanqwabelana:

  • Ukuhanjiswa kwedatha : Amakhophi ezindawo ezihlukene, ukudluliswa kwamafu, ngisho nokuphuma komsebenzisi [2].

  • I-redundancy : Ukulandela i-3-2-1 (amakhophi amathathu, imidiya emibili, eyodwa ngaphandle kwesayithi) kudla isikhala kodwa konga usuku [3].

  • Amandla nokupholisa : Uma kuyirack yakho, inkinga yakho yokushisa.

  • I-latency trade-offs : Izigaba ezishibhile ngokuvamile zisho isivinini sokubuyisela iqhwa.


Ukuphepha Nokuthobelana: Abanqamuli Bezivumelwano Ezithulile 🔒

Imithethonqubo ingasho ngokoqobo ukuthi amabhayithi ahlala kuphi. Ngaphansi kwe -UK GDPR , ukususa idatha yomuntu siqu e-UK kudinga imizila yokudlulisa esemthethweni (ama-SCC, ama-IDTA, noma imithetho yokufaneleka). Ukuhumusha: idizayini yakho yesitoreji kufanele "yazi" indawo [5].

Izinto eziyisisekelo ongazibhaka kusukela ngosuku lokuqala:

  • Ukubethela - kokubili ukuphumula nokuhamba.

  • Ukufinyelela okuyilungelo elincane + nemikhondo yokuhlola.

  • Susa ukuvikela njengokungaguquki noma ukukhiya into.


Amabhodlela Okusebenza: Ukubambezeleka Kungumbulali Othule ⚡

Ama-GPU awathandi ukulinda. Uma isitoreji sibambezeleka, ama-heaters akhazinyulisiwe. Amathuluzi afana ne -NVIDIA GPUDirect Storage asika i-CPU middleman, ishutha idatha iqonde isuka ku-NVMe iye kwimemori ye-GPU - lokho kanye okufiswa ukuqeqeshwa kwenqwaba enkulu [4].

Ukulungiswa okujwayelekile:

  • I-NVMe all-flash yamashadi okuqeqesha ashisayo.

  • Amasistimu wefayela ahambisanayo (i-Lustre, i-Spectrum Scale) yokuphuma kwamanodi amaningi.

  • Izilayishi ze-Async ezine-sharding + ukulanda kuqala ukuze kuvinjwe ama-GPU ukuthi angenzi lutho.


Izinyathelo Ezisebenzayo Zokuphatha Isitoreji Se-AI 🛠️

  • I-Tiering : Amashadi ashisayo ku-NVMe/SSD; gcina kungobo yomlando amasethi akudala ezinto noma izigaba ezibandayo.

  • I-Dedup + delta : Gcina izisekelo kanye, gcina kuphela ama-diffs + manifests.

  • Imithetho ye-Lifecycle : I-auto-tier kanye nemiphumela emidala ephelelwa yisikhathi [2].

  • Ukuqina kwe-3-2-1 : Njalo gcina amakhophi amaningi, kuyo yonke imidiya ehlukene, neyodwa eyodwa [3].

  • Amathuluzi : Ithrekhi yokuphuma, ukubambezeleka kwe-p95/p99, ukufundwa okuhlulekile, ukuphuma ngomthwalo womsebenzi.


Ikesi Elisheshayo (Elenziwe Kodwa Elivamile) 📚

Ithimba lombono liqala nge-~20 TB endaweni yokubeka into yamafu. Kamuva, baqala ukwenza amasethi edatha ezifundeni zonkana ukuze kuhlolwe. Izindleko zabo ibhaluni - hhayi kusuka kwisitoreji ngokwayo, kodwa kusukela ku-egress traffic . Bashintsha ama-hot shards baye ku-NVMe eduze kweqoqo le-GPU, bagcine ikhophi ye-canonical endaweni yokulondoloza into (ngemithetho yomjikelezo wempilo), futhi baphine kuphela amasampula abawadingayo. Umphumela: Ama-GPU amatasa kakhulu, izikweletu ziyancipha, futhi ukuhlanzeka kwedatha kuyathuthuka.


Ukuhlela Umthamo Osemuva Kwemvilophu 🧮

Ifomula enzima yokulinganisa:

Amandla ≈ (I-Raw Dataset) × (I-Replication Factor) + (Idatha Esetshenzwe ngaphambili / Eyengeziwe) + (Izindawo Zokuhlola + Amalogi) + (Imajini Yokuphepha ~15–30%)

Bese ingqondo ibheka ngokumelene nokuphuma. Uma izilayishi ze-node ngayinye zidinga u-~2–4 GB/s ukusekelwa, ubheka i-NVMe noma i-FS efanayo ukuze uthole izindlela ezishisayo, nokugcinwa kwento njengeqiniso eliyisisekelo.


Akukona nje Ngesikhala 📊

Uma abantu bethi izidingo zesitoreji se-AI , bafanekisela ama-terabytes noma ama-petabytes. Kodwa iqhinga langempela liwukulinganisela: izindleko uma ziqhathaniswa nokusebenza, ukuguquguquka ngokumelene nokuhambisana, ukusungula izinto ezintsha ngokumelene nokuzinza. Idatha ye-AI ayinciphi nganoma yisiphi isikhathi maduze. Amaqembu ahlanganisa isitoreji ekwakhekeni kwamamodeli kusenesikhathi agwema ukuminza emaxhaphozini edatha - futhi agcina eseziqeqeshe ngokushesha, nawo.


Izithenjwa

[1] URussakovsky et al. I-ImageNet Enkulu Yesikali Esibonakalayo Esiyinselelo Yokuqashelwa (IJCV) — isikali sedathasethi kanye nenselelo. Xhumanisa
[2] AWS — Intengo ye-Amazon S3 nezindleko (ukudluliswa kwedatha, i-egress, ama-lifecycle tiers). Xhumanisa
[3] CISA — 3-2-1 umthetho wokusekela ngomthetho iseluleko. Xhuma
[4] NVIDIA Amadokhumenti — Uhlolojikelele lwesitoreji se-GPUDirect. Xhumanisa
[5] ICO — Imithetho ye-GDPR yase-UK mayelana nokudluliswa kwedatha yamazwe ngamazwe. Isixhumanisi


Thola i-AI yakamuva esitolo esisemthethweni somsizi we-AI

Mayelana NATHI

Buyela kubhulogi