Uma uke wahlohla amathuluzi e-AI futhi wazibuza ukuthi umlingo wangempela wokuphela-uphela wenzekaphi-kusuka ekudlaleni ngokushesha kuya ekukhiqizweni ngokuqapha-yilona olokhu uzwa ngawo. I-Vertex AI ye-Google inqwabelanisa amamodeli ezindawo zokudlala, ama-MLOps, izixhumanisi zedatha, nosesho lwe-vector endaweni eyodwa, yezinga lebhizinisi. Qala i-scrappy, bese ukala. Kuyinto engavamile ngokumangalisayo ukuthola kokubili ngaphansi kophahla olulodwa.
Ngezansi ukuvakasha okungewona umbhedo. Sizophendula umbuzo ocacile- Iyini i-Google Vertex AI? -futhi futhi ubonise ukuthi sifana kanjani isitaki sakho, yini okufanele uzame kuqala, ukuthi izindleko ziziphatha kanjani, futhi lapho ezinye izindlela zenza umqondo owengeziwe. Fasa ibhande. Kuningi lapha, kodwa indlela ilula kunokubukeka kwayo. 🙂
Izindatshana ongathanda ukuzifunda ngemva kwalesi:
🔗 Yini umqeqeshi we-AI
Ichaza ukuthi abaqeqeshi be-AI bawacwenga kanjani amamodeli ngempendulo yomuntu kanye nokulebula.
🔗 Yini i-AI arbitrage: Iqiniso ngemuva kwe-buzzword
Yephula i-AI arbitrage, imodeli yayo yebhizinisi, nemithelela yemakethe.
🔗 Iyini i-AI engokomfanekiso: Konke okudingeka ukwazi
Ihlanganisa ukucabanga okusekelwe ku-AI okungokomfanekiso kanye nokuthi ihluke kanjani ekufundeni komshini.
🔗 Iluphi ulimi lokuhlela olusetshenziselwa i-AI
Iqhathanisa iPython, R, nezinye izilimi zokuthuthukiswa kwe-AI nocwaningo.
🔗 Iyini i-AI njengesevisi
Ichaza izinkundla ze-AIaaS, izinzuzo, nokuthi amabhizinisi awasebenzisa kanjani amathuluzi e-AI asekelwe emafini.
Yini i-Google Vertex AI? 🚀
I-Google Vertex AI iyinkundla ephethwe ngokugcwele, ebumbene ku-Google Cloud yokwakha, ukuhlola, ukuthumela, nokuphatha amasistimu e-AI-ehlanganisa kokubili i-ML yakudala kanye ne-AI yesimanje ekhiqizayo. Ihlanganisa isitudiyo esiyimodeli, amathuluzi e-ejenti, amapayipi, izincwadi zokubhalela, irejista, ukuqapha, ukusesha kwe-vector, nokuhlanganiswa okuqinile namasevisi wedatha ye-Google Cloud [1].
Kalula nje: kulapho wenza khona i-prototype ngamamodeli ayisisekelo, uwashune, uwasebenzise ukuze avikele izindawo zokugcina, zenzakalela ngamapayipi, futhi ugcine yonke into igadiwe futhi ibuswa. Okubaluleke kakhulu, lokhu ikwenza endaweni eyodwa-okubaluleke kakhulu kunalokho kubonakala ngosuku lokuqala [1].
Iphethini yomhlaba wangempela esheshayo: Amaqembu ngokuvamile adweba imiyalo kuSitudiyo, afake i-notebook encane ukuze ahlole i-I/O esebenzisa idatha yangempela, abese ephromotha lezo zimpahla zibe imodeli ebhalisiwe, indawo yokugcina, kanye nepayipi elilula. Isonto lesibili livamise ukuqapha kanye nezixwayiso. Iphuzu akuwona ubuqhawe-ukuphindaphinda.
Yini eyenza i-Google Vertex AI ibe yinhle kakhulu ✅
-
Uphahla olulodwa lwe-lifecycle - i-prototype kusitudiyo, izinguqulo zerejista, sebenzisa inqwaba noma ngesikhathi sangempela, bese uqapha ukukhukhuleka nezinkinga. Ikhodi yeglue encane. Amathebhu ambalwa. Ukulala okwengeziwe [1].
-
Amamodeli e-Model Garden + Gemini - thola, wenze ngendlela oyifisayo, futhi usebenzise amamodeli avela ku-Google kanye nozakwethu, okuhlanganisa nomndeni wakamuva wama-Gemini, ngomsebenzi wombhalo nomsebenzi we-multimodal [1].
-
Umakhi we-ejenti - yakha ama-ejenti agxile emsebenzini, anezinyathelo eziningi angakwazi ukuhlela amathuluzi nedatha ngokusekelwa kokuhlola kanye nesikhathi sokusebenza esiphethwe [2].
-
Amapayipi okuthembeka - i-orchestration engenasiphakeli yokuqeqeshwa okuphindaphindwayo, ukuhlola, ukulungisa, nokusatshalaliswa. Uzozibonga uma isitimela sesithathu sesiphenduka [1].
-
I-Vector Search esikalini - ukubuyiselwa kwevektha yezinga eliphezulu, ephansi-latency ye-RAG, izincomo, nosesho lwe-semantic, olwakhelwe kungqalasizinda yezinga lokukhiqiza le-Google [3].
-
Ukuphathwa kwesici nge-BigQuery - gcina idatha yakho yesici ku-BigQuery futhi unikeze izici ku-inthanethi nge-Vertex AI Feature Store ngaphandle kokukopisha isitolo esingaxhunyiwe ku-inthanethi [4].
-
Amabhuku okubhalela e-Workbench - izindawo ze-Jupyter eziphethwe ezixhunywe kumasevisi e-Google Cloud (BigQuery, Cloud Storage, njll.) [1].
-
Izinketho ze-AI ezinomthwalo wemfanelo - ukusebenzisa amathuluzi okuphepha kanye zokugcinwa kwedatha eziyiziro (uma zilungiselelwe ngokufanelekile) kumthwalo okhiqizayo [5].
Izingcezu ezibalulekile ozozithinta 🧩
1) I-Vertex AI Studio - lapho izixwayiso zikhula khona 🌱
Dlala, hlola, futhi ushune amamodeli esisekelo ku-UI. Ilungele ukuphindaphinda okusheshayo, ukwaziswa okungasebenziseka kabusha, kanye nokudluliselwa ekukhiqizeni uma okuthile "kuchofozwa" [1].
2) Ingadi Yemodeli - ikhathalogi yakho eyimodeli 🍃
Ilabhulali emaphakathi ye-Google namamodeli ozakwethu. Phequlula, yenza ngendlela oyifisayo, futhi usebenzise ngokuchofoza okumbalwa-iphoyinti langempela lokuqala esikhundleni sokuzingela okungcolile [1].
3) Umakhi we-ejenti - wokuzenzela okuthembekile 🤝
Njengoba ama-ejenti aguquka esuka kumademo aye emsebenzini wangempela, udinga amathuluzi, isisekelo, kanye ne-orchestration. Umakhi we-ejenti uhlinzeka ngesikafula (Izikhathi, Ibhange Lenkumbulo, amathuluzi akhelwe ngaphakathi, ukuhlola) ukuze ukuzizwisa kwama-ejenti amaningi kungawi ngaphansi kobubi bomhlaba wangempela [2].
4) Amapayipi - ngoba uzophinda noma kunjalo 🔁
Yenza ngokuzenzakalelayo ukuhamba komsebenzi kwe-ML ne-gen-AI nge-orchestrator engenaseva. Isekela ukulandelela kwe-artifact kanye nokugijima okuphindaphindekayo-cabanga ngakho njenge-CI yamamodeli akho [1].
5) Ibhentshi Lokusebenzela - izincwadi zokubhalela eziphethwe ngaphandle kwe-yak shave 📓
Spina izindawo ezivikelekile ze-JupyterLab ngokufinyelela okulula ku-BigQuery, Isitoreji Samafu, nokuningi. Iwusizo ekuhloleni, isici sobunjiniyela, nokuhlola okulawulwayo [1].
6) Irejista Yemodeli - inguqulo enamathela 🗃️
Landelela amamodeli, izinguqulo, uhlu lozalo, futhi usebenzise ngokuqondile ezindaweni zokugcina. Iregistry yenza i-handoffs kubunjiniyela ingabi nama-squishy kakhulu [1].
7) I-Vector Search - i-RAG enganglimi 🧭
Kala ukubuyiswa kwe-semantic ngengqalasizinda yevekhtha yokukhiqiza ye-Google-iwusizo engxoxweni, ukusesha kwe-semantic, nezincomo lapho ukubambezeleka kubonakala kumsebenzisi [3].
8) Isitolo Sesici - gcina i-BigQuery njengomthombo weqiniso 🗂️
Phatha futhi unikeze izici ku-inthanethi kusuka kudatha ehlala ku-BigQuery. Ukukopisha okuncane, imisebenzi embalwa yokuvumelanisa, ukunemba okwengeziwe [4].
9) Ukuqapha Imodeli - themba, kodwa qinisekisa 📈
Shejula ukuhlolwa kokukhukhuleka, setha izexwayiso, futhi ugcine amathebhu kukhwalithi yokukhiqiza. Umzuzu wethrafikhi uyashintsha, uzofuna lokhu [1].
Ingena kanjani kusitaki sakho sedatha 🧵
-
I-BigQuery - qeqesha ngedatha lapho, phushela izibikezelo zenqwaba emuva kumathebula, futhi izibikezelo zezintambo zibe izibalo noma wenze kusebenze ezansi nomfula [1][4].
-
Isitoreji Samafu - gcina amasethi edatha, ama-artifact, nemiphumela yemodeli ngaphandle kokusungula kabusha isendlalelo se-blob [1].
-
Ukugeleza kwedatha nabangane - sebenzisa ukucutshungulwa kwedatha okuphethwe ngaphakathi kwamapayipi ukuze kucutshungulwe ngaphambili, kuthuthukiswe, noma kufinyelelwe ekusakazeni [1].
-
Ama-Endpoints noma Iqoqo - sebenzisa izindawo zokugcina zesikhathi sangempela zezinhlelo zokusebenza nama-ejenti, noma wenze imisebenzi yeqoqo ukuze uthole amathebula aphelele-cishe uzosebenzisa kokubili [1].
Izigameko zokusetshenziswa ezijwayelekile ezihlala 🎯
-
Ingxoxo, ama-copilot, nama-ejenti - ngokusekela idatha yakho, ukusetshenziswa kwamathuluzi, nokugeleza kwezinyathelo eziningi. I-Agent Builder yakhelwe ukwethembeka, hhayi nje into entsha [2].
-
I-RAG nokusesha kwe-semantic - hlanganisa i-Vector Search ne-Gemini ukuze uphendule imibuzo usebenzisa okuqukethwe kwakho kobunikazi. Isivinini sibaluleke ngaphezu kokuzenzisa [3].
-
I-ML eqagelayo - ithebula lesitimela noma amamodeli wesithombe, hambisa endaweni yokugcina, qapha ukukhukhuleka, uqeqeshe kabusha ngamapayipi lapho ama-threshold eqa. Eyakudala, kodwa ebucayi [1].
-
Ukwenziwa kusebenze kwezibalo - bhala izibikezelo ku-BigQuery, yakha izethameli, nemikhankaso yokuphakelayo noma izinqumo zomkhiqizo. Iluphu enhle lapho ukumaketha kuhlangana nesayensi yedatha [1][4].
Ithebula lokuqhathanisa - I-Vertex AI vs ezinye izindlela ezidumile 📊
Isifinyezo esisheshayo. Umbono omnene. Khumbula ukuthi amakhono anembile nezintengo ziyahlukahluka ngesevisi nendawo.
| Inkundla | Izithameli ezihamba phambili | Kungani kusebenza |
|---|---|---|
| I-Vertex AI | Amaqembu aku-Google Cloud, inhlanganisela ye-gen-AI + ML | Isitudiyo esihlanganisiwe, amapayipi, indawo yokubhalisa, usesho lwe-vector, nezibopho eziqinile ze-BigQuery [1]. |
| I-AWS SageMaker | Ama-AWS-okuqala ama-org adinga amathuluzi e-ML ajulile | Isevisi ye-ML ekhulile, yomjikelezo wempilo ephelele enokuqeqeshwa okubanzi nezinketho zokusatshalaliswa. |
| I-Azure ML | Ibhizinisi eliqondaniswe ne-Microsoft IT | Umjikelezo wokuphila we-ML ohlanganisiwe, i-UI yomklami, kanye nokubusa ku-Azure. |
| Idathabricks ML | Amaqembu e-Lakehouse, i-notebook-heavy flows | Ukugeleza kokusebenza komdabu wedatha okuqinile namandla okukhiqiza e-ML. |
Yebo, imisho ayilingani-real amathebula ngezinye izikhathi.
Izindleko ngesiNgisi esilula 💸
Ukhokha kakhulu izinto ezintathu:
-
Imodeli yokusetshenziswa kwezingcingo ezikhiqizayo-inenani ngomthwalo womsebenzi kanye nekilasi lokusebenzisa.
-
Bala ukuze uthole ukuqeqeshwa ngokwezifiso nemisebenzi yokushuna.
-
Ukusebenzela ama-endpoints aku-inthanethi noma imisebenzi yenqwaba.
Ukuze uthole izinombolo eziqondile nezinguquko zakamuva, hlola amakhasi entengo asemthethweni e-Vertex AI kanye neminikelo yayo ekhiqizayo. Ithiphu ozozibonga ngayo ngokuhamba kwesikhathi: buyekeza izinketho zokunikeza kanye nezabelo zeSitudiyo uma kuqhathaniswa neziphetho zokukhiqiza ngaphambi kokuthi uthumele noma yini esindayo [1][5].
Ukuphepha, ukubusa, kanye ne-AI enomthwalo wemfanelo 🛡️
I-Vertex AI inikeza isiqondiso se-AI esinomthwalo wemfanelo kanye namathuluzi okuphepha, kanye nezindlela zokumisa ukuze kufinyelelwe ukungabikho kokugcinwa kwedatha komthwalo othile okhiqizayo (isibonelo, ngokukhubaza ukugcinwa kwedatha kanye nokuphuma kumalogi athile lapho kufanele) [5]. Bhatanisa lokho nokufinyelela okusekelwe endimeni, inethiwekhi yangasese, kanye namalogi ocwaningo lwezakhiwo ezivumelana nokuthobela [1].
Lapho i-Vertex AI iphelele-futhi uma iqina kakhulu 🧠
-
Iphelele uma ufuna indawo eyodwa ye-gen-AI ne-ML, ukuhlanganiswa okuqinile kwe-BigQuery, kanye nendlela yokukhiqiza ehlanganisa amapayipi, ukubhalisa, nokuqapha. Uma ithimba lakho lisebenzisa isayensi yedatha nobunjiniyela bohlelo lokusebenza, indawo eyabiwe iyasiza.
-
I-overkill uma udinga kuphela ikholi yemodeli engasindi noma i-prototype yenhloso eyodwa engeke idinge ukubusa, ukuqeqeshwa kabusha, noma ukugadwa. Kulezo zimo, indawo elula ye-API ingase yanele okwamanje.
Masikhulume iqiniso: ama-prototypes amaningi ayafa noma akhule amazinyo. I-Vertex AI isingatha icala lesibili.
Ukuqala okusheshayo - ukuhlolwa kokunambitha kwemizuzu engu-10 ⏱️
-
Vula i-Vertex AI Studio ukuze wenze isibonelo ngemodeli futhi ulondoloze imiyalo embalwa oyithandayo. Khahlela amathayi ngombhalo wakho wangempela nezithombe [1].
-
Faka isicelo sakho esingcono kakhulu kuhlelo lokusebenza oluncane noma incwadi yokubhalela evela ku-Workbench . Kuhle futhi kubi [1].
-
Bhalisa imodeli yokusekelwa yohlelo lokusebenza noma ifa elishuniwe kusibhalisi Semodeli ukuze ungajikijeli ngama-artifact angashiwongo [1].
-
Dala i -Pipeline elayisha idatha, ehlola okuphumayo, futhi ikhiphe inguqulo entsha ngemuva kwesibizo. Ukuphindaphinda kwehlula amaqhawe [1].
-
Engeza Ukuqapha ukuze ubambe i-drift futhi usethe izexwayiso eziyisisekelo. Ikusasa lakho lizokuthengela ikhofi lalokhu [1].
Ongakukhetha kodwa uhlakaniphile: uma ikesi lakho lokusebenzisa liseshesha noma liyaxoxa, engeza i-Vector Search futhi isisekelo kusukela ngosuku lokuqala. Kungumehluko phakathi kokuhle nokusebenziseka ngendlela emangalisayo [3].
Yini i-Google Vertex AI? - inguqulo emfushane 🧾
Yini i-Google Vertex AI? Kuyinkundla ye-Google Cloud yakho konke kokukodwa yokuklama, ukuphakela, nokuphatha amasistimu e-AI-kusuka ngokushesha kuya ekukhiqizweni ngamathuluzi okwakhelwe ngaphakathi ama-ejenti, amapayipi, usesho lwe-vector, izincwadi zokubhalela, ukubhaliswa, nokuqapha. Kucatshangwa ngezindlela ezisiza amaqembu ukuthi athumele [1].
Ezinye izindlela lapho uthi shazi - ukukhetha umzila ofanele 🛣️
Uma usuvele ujulile ku-AWS, i-SageMaker izozizwa idabuka. Izitolo ze-Azure zivame ukukhetha i-Azure ML . Uma iqembu lakho lihlala ezincwadini nakumachibi, i-Databricks ML inhle kakhulu. Akukho kulokhu okungalungile-amandla adonsela phansi edatha yakho kanye nezimfuneko zokuphatha zivame ukunquma.
I-FAQ - umlilo osheshayo 🧨
-
Ingabe i-Vertex AI ingeye-generative AI kuphela? I-No-Vertex AI iphinde ihlanganise ukuqeqeshwa kwe-ML yakudala nokusebenza ngezici ze-MLOps kososayensi bedatha nonjiniyela be-ML [1].
-
Ngingakwazi ukugcina i-BigQuery njengesitolo sami esikhulu? Yebo sebenzisa Isitolo Sesici ukuze ulondoloze idatha yesici ku-BigQuery futhi uyisebenzise ku-inthanethi ngaphandle kokukopisha isitolo esingaxhunyiwe ku-inthanethi [4].
-
Ingabe i-Vertex AI iyasiza nge-RAG? I-Yes-Vector Search yakhelwe yona futhi ihlanganisa nesitaki sonke [3].
-
Ngizilawula kanjani izindleko? Qala kancane, ulinganise, futhi ubuyekeze izilinganiso/ukunikezwa nezintengo zesigaba somsebenzi ngaphambi kokukala [1][5].
Izithenjwa
[1] I-Google Cloud - Isingeniso se-Vertex AI (Uhlolojikelele lwenkundla Ehlanganisiwe) - funda kabanzi
[2] I-Google Cloud - Uhlolojikelele Lomakhi Womenzeli we-Vertex AI - funda kabanzi
[3] I-Google Cloud - Sebenzisa i-Vertex AI Vector Search ene-Vertex AI RAG Engine - funda kabanzi
[4] I-Google Cloud - Isingeniso sokuphathwa kwesici ku-Vertex AI - funda kabanzi
[5] I-Google Cloud - Ukugcinwa kwedatha yekhasimende nokugcinwa kwedatha eyiziro ku-Vertex AI - funda kabanzi