Iyini iNeural Network ku-AI?

Iyini iNeural Network ku-AI?

Amanethiwekhi e-Neural azwakala engaqondakali kuze kube yilapho engenzi. Uma uke wazibuza ukuthi iyini iNeural Network ku-AI? futhi noma ngabe izibalo ngesigqoko sikanokusho, usendaweni efanele. Sizokugcina kusebenza, sifafaze ngokuchezuka okuncane, futhi yebo - ama-emoji ambalwa. Uzoshiya wazi ukuthi lezi zinhlelo ziyini, kungani zisebenza, lapho zihluleka khona, nokuthi ungakhuluma kanjani ngazo ngaphandle kokunyakazisa isandla.

Izindatshana ongathanda ukuzifunda ngemva kwalesi:

🔗 Kuyini ukuchema kwe-AI
Ukuqonda ukuchema ezinhlelweni ze-AI namasu okuqinisekisa ukulunga.

🔗 Yini i-AI ebikezelayo
I-AI eqagelayo isebenzisa kanjani amaphethini ukubikezela imiphumela yesikhathi esizayo.

🔗 Yini umqeqeshi we-AI
Ukuhlola indima nezibopho zochwepheshe abaqeqesha i-AI.

🔗 Uyini umbono wekhompyutha ku-AI
I-AI ihumusha futhi ihlaziya kanjani idatha ebonakalayo ngokubona kwekhompyutha.


Iyini iNeural Network ku-AI? Impendulo yemizuzwana eyi-10 ⏱️

Inethiwekhi ye-neural iyinqwaba yamayunithi wokubala alula abizwa ngama-neurons adlulisa izinombolo phambili, alungise amandla azo okuxhumana phakathi nokuqeqeshwa, futhi kancane kancane afunde amaphethini kudatha. Uma uzwa ukufunda okujulile , lokho ngokuvamile kusho inethiwekhi ye-neural enezendlalelo eziningi ezistakiwe, izici zokufunda ngokuzenzakalelayo esikhundleni sokuthi uzibhale ngesandla. Ngamanye amazwi: izingcezu zezibalo eziningi ezincane, ezihlelwe ngobuhlakani, eziqeqeshwe ngedatha zize zibe usizo [1].


Yini eyenza iNeural Network ibe wusizo? ✅

  • Amandla okumela : Ngesakhiwo esifanele kanye nosayizi, amanethiwekhi angakwazi ukulinganisa imisebenzi eyinkimbinkimbi kakhulu (bona i-Universal Approximation Theorem) [4].

  • Ukufunda kokuphela : Esikhundleni sezici zobunjiniyela bezandla, imodeli iyazithola [1].

  • Ukwenziwa Okujwayelekile : Inethiwekhi elawulwa kahle ayigcini nje ngekhanda - isebenza kudatha entsha, engabonakali [1].

  • Ukunwebeka : Amasethi edatha amakhulu kanye namamodeli amakhulu ngokuvamile agcina imiphumela ethuthukayo… kufika emikhawulweni engokoqobo efana nekhompyutha nekhwalithi yedatha [1].

  • Ukudluliselwa : Izici ezifundwe kumsebenzi owodwa zingasiza omunye (ukudlulisa ukufunda nokulungisa kahle) [1].

Inothi lenkundla elincane (isibonelo sesimo): Ithimba elincane elihlukanisa umkhiqizo lishintshanisa izici ezakhiwe ngesandla ukuze lithole i-CNN ehlangene, lengeza ama-augmentation alula (ama-flips/crops), futhi amawashi ephutha lokuqinisekisa ukwehla - hhayi ngoba inethiwekhi "iwumlingo," kodwa ngoba ifunde izici eziwusizo kakhulu kusuka kumaphikseli.


"Iyini iNeural Network ku-AI?" ngesiNgisi esilula, nesingathekiso se-iffy 🍞

Cabanga ngomugqa webhikawozi. Izithako ziyangena, abasebenzi balungisa iresiphi, abahloli bokunambitheka bayakhononda, futhi ithimba libuyekeza iresiphi futhi. Kunethiwekhi, okokufaka kugeleza ngezendlalelo, umsebenzi wokulahlekelwa ukala okukhiphayo, futhi ama-gradient agudluza izisindo ukuze enze kangcono ngokuzayo. Ayiphelele njengesingathekiso - isinkwa asihlukaniseki - kodwa siyanamathela [1].


I-anatomy yenethiwekhi ye-neural 🧩

  • Ama-Neurons : Izibali ezincane ezisebenzisa isamba esinesisindo kanye nomsebenzi wokwenza kusebenze.

  • Isisindo nokuchema : Amafindo alungisekayo achaza ukuthi amasiginali ahlangana kanjani.

  • Izendlalelo : Isendlalelo sokokufaka sithola idatha, izendlalelo ezifihliwe ziyayiguqula, isendlalelo sokuphumayo senza isibikezelo.

  • Imisebenzi yokwenza kusebenze : Ama-twist angaqondile njenge-ReLU, i-sigmoid, i-tanh, ne-softmax yenza ukufunda kube nezimo.

  • Umsebenzi wokulahlekelwa : Isikolo sokuthi isibikezelo singalungile kangakanani (i-cross-entropy yokuhlelwa, i-MSE yokuhlehla).

  • I-Optimizer : Ama-algorithms afana ne-SGD noma u-Adam asebenzisa ama-gradient ukuze abuyekeze izisindo.

  • Ukwenziwa njalo : Amasu afana nokuyeka ukufunda noma ukuwohloka kwesisindo ukuze kuvinjwe imodeli ukuthi ingachithi ngokweqile.

Uma ufuna ukwelashwa okusemthethweni (kodwa kusafundeka), incwadi evulekile yokufunda Okujulile imboza isitaki esigcwele: izisekelo zezibalo, ukuthuthukiswa, kanye nokujwayelekile [1].


Imisebenzi yokuvula, kafushane kodwa ewusizo ⚡

  • I-ReLU : Uziro wama-negative, umugqa wokuphozithiza. Ilula, iyashesha, iyasebenza.

  • I-Sigmoid : I-Squashes amanani aphakathi kuka-0 no-1 - awusizo kodwa angagcwala.

  • I-Tanh : Njenge-sigmoid kodwa i-symmetric ezungeze uziro.

  • I-Softmax : Iguqula izikolo ezingavuthiwe zibe amathuba kuwo wonke amakilasi.

Awudingi ukubamba ngekhanda zonke izimo zejika - vele wazi ukuhweba kanye nokuzenzakalelayo okujwayelekile [1, 2].


Indlela ukufunda okwenzeka ngayo ngempela: i-backprop, kodwa ayesabi 🔁

  1. Ukudlula phambili : Idatha igeleza isendlalelo ngesendlalelo ukuze ikhiqize isibikezelo.

  2. Ukulahlekelwa ngekhompyutha : Qhathanisa ukubikezela neqiniso.

  3. I-Backpropagation : Bala ama-gradients okulahlekelwa ngokuphathelene nesisindo ngasinye usebenzisa umthetho weketango.

  4. Buyekeza : I-Optimizer ishintsha izisindo kancane.

  5. Phinda : Izinkathi eziningi. Imodeli ifunda kancane kancane.

Ukuze uthole ukwaziswa okwengeziwe okubonakalayo kanye nezincazelo eziseduze ngekhodi, bona amanothi akudala e-CS231n ku-backprop kanye nokwenza kahle [2].


Imindeni emikhulu yamanethiwekhi emizwa, ngokubuka nje 🏡

  • Amanethiwekhi e-Feedforward (MLPs) : Uhlobo olulula kakhulu. Idatha iya phambili kuphela.

  • I-Convolutional Neural Networks (CNNs) : Ilungele izithombe ngenxa yezihlungi zendawo ezithola imiphetho, ukwakheka, umumo [2].

  • I-Recurrent Neural Networks (RNNs) & okuhlukile : Yakhelwe ukulandelana njengombhalo noma uchungechunge lwesikhathi ngokugcina umuzwa wokuhleleka [1].

  • Ama-Transformers : Sebenzisa ukunaka ekufanekiseni ubudlelwano kuzo zonke izikhundla ngokulandelana konke ngesikhathi esisodwa; ebusayo ngolimi nangale kwalokho [3].

  • IGraph Neural Networks (GNNs) : Isebenza kumanodi nasemaphethelweni egrafu - iwusizo kuma-molecule, amanethiwekhi omphakathi, isincomo [1].

  • Ama-Autoencoder nama-VAE : Funda izethulo ezicindezelwe futhi ukhiqize okuhlukile [1].

  • Amamodeli akhiqizayo : Kusukela kuma-GAN ukuya kumamodeli okusabalalisa, asetshenziselwa izithombe, umsindo, ngisho nekhodi [1].

Amanothi e-CS231n anobungane ikakhulukazi kuma-CNN, kuyilapho iphepha le-Transformer liwumthombo oyinhloko wamamodeli asekelwe ekunakekelweni [2, 3].


Ithebula lokuqhathanisa: izinhlobo ezivamile zenethiwekhi ye-neural, ezingobani, amavayibhu ezindleko, nokuthi kungani zisebenza 📊

Ithuluzi / Uhlobo Izilaleli Inani-ish Kungani kusebenza
I-Feedforward (MLP) Abaqalayo, abahlaziyi Okuphansi-okumaphakathi Izisekelo ezilula, eziguquguqukayo, ezihloniphekile
CNN Amaqembu ombono Maphakathi Amaphethini endawo + ukwabelana kwepharamitha
I-RNN / LSTM / GRU Hlelani bakwethu Maphakathi Inkumbulo yesikhashana… ithwebula ukuhleleka
I-Transformer I-NLP, i-multimodal Ukuphakama okuphakathi Ukunaka kugxile ebudlelwaneni obufanele
GNN Ososayensi, recsys Maphakathi Ukudlulisa umlayezo kumagrafu kuveza ukwakheka
I-Autoencoder / VAE Abacwaningi Okuphansi-okumaphakathi Ufunda izethulo ezicindezelwe
I-GAN / Ukusabalalisa Amalebhu okudala Ukuphakama okuphakathi Umlingo ophikisayo noma ophindaphindayo

Amanothi: amanani amayelana nokubala kanye nesikhathi; imayela lakho liyahlukahluka. Iseli noma amabili axoxa ngamabomu.


"Iyini iNeural Network ku-AI?" vs classical ML algorithms ⚖️

  • Ubunjiniyela besici : I-ML yakudala ivamise ukuncika ezicini ezenziwa mathupha. Amanethi e-Neural afunda izici ngokuzenzakalelayo - ukuwina okukhulu kwedatha eyinkimbinkimbi [1].

  • Ukulamba kwedatha : Amanethiwekhi avame ukukhanya ngedatha eyengeziwe; idatha encane ingase ithande amamodeli alula [1].

  • Ukubala : Amanethiwekhi athanda ama-accelerator afana nama-GPU [1].

  • Isilingi sokusebenza : Kudatha engahlelekile (izithombe, umsindo, umbhalo), amanetha ajulile avame ukubusa [1, 2].


Ukugeleza komsebenzi wokuqeqesha okusebenza empeleni 🛠️

  1. Chaza inhloso : Ukuhlelwa, ukwehla, izinga, isizukulwane - khetha ukulahlekelwa okufana.

  2. Ukungqubuzana kwedatha : Hlukanisa phakathi kwesitimela/ukuqinisekisa/ukuhlola. Hlela izici. Amakilasi okulinganisela. Ukuze uthole izithombe, cabangela ukukhulisa njengokuphenduka, izitshalo, umsindo omncane.

  3. Ukukhetha kwe-Architecture : Qala okulula. Engeza umthamo kuphela uma kudingeka.

  4. Iluphu yokuqeqesha : Hlanganisa idatha. Phambili iphasi. Bala ukulahlekelwa. I-Backprop. Buyekeza. Amamethrikhi wokungena.

  5. Hlela : Ukuyeka, ukuwohloka kwesisindo, ukuyeka ngokushesha.

  6. Linganisa : Sebenzisa isethi yokuqinisekisa yama-hyperparameter. Bamba isethi yokuhlola ukuze uthole isheke lokugcina.

  7. Thumela ngokucophelela : Bheka ukukhukhuleka, hlola ukuchema, hlela ukubuyisela emuva.

Okokufundisa okusuka ekupheleni kuya ekupheleni, okugxile kukhodi okunethiyori eqinile, incwadi yokufunda evulekile namanothi e-CS231n angamahange athembekile [1, 2].


Ukufakela ngokweqile, ukwenza okuvamile, namanye ama-gremlins 👀

  • I-Overfitting : Imodeli ibamba ngekhanda izici zokuqeqesha. Lungisa ngedatha eyengeziwe, ukujwayela okuqinile, noma izakhiwo ezilula.

  • I-Underfitting : Imodeli ilula kakhulu noma iqeqeshelwa ukwesaba kakhulu. Khulisa umthamo noma qeqesha isikhathi eside.

  • Ukuvuza kwedatha : Ulwazi olusuka kusethi yokuhlola lungena ngokunyenya ekuqeqesheni. Kathathu hlola ukuhlukana kwakho.

  • Ukulinganiswa okungalungile : Imodeli ezithembayo kodwa engalungile iyingozi. Cabangela ukulinganisa noma ukulahlekelwa isisindo okuhlukile.

  • Ukushintsha kokusabalalisa : Ukuhamba kwedatha yomhlaba wangempela. Gada futhi uzivumelanise nezimo.

Ngombono wokwenza izinto ngokujwayelekile kanye nokujwayelekile, ncika kumareferensi ajwayelekile [1, 2].


Ukuphepha, ukutolika, kanye nokuthunyelwa okunomthwalo wemfanelo 🧭

Amanethiwekhi e-Neural angenza izinqumo eziphezulu. Akwanele ukuthi benza kahle ebhodini labaphambili. Udinga ukubusa, ukukala, kanye nezinyathelo zokunciphisa kuwo wonke umjikelezo wempilo. I-NIST AI Risk Management Framework iveza imisebenzi engokoqobo - GOVERN, MAP, MEASURE, MANAGE - ukusiza amathimba ahlanganise ukuphathwa kwengozi ekwakhiweni nasekusetshenzisweni [5].

Ukugudluza okusheshayo okumbalwa:

  • Ukuhlolwa kokuchema : Linganisa kuzo zonke izingcezu zezibalo zabantu lapho kufanele khona futhi kusemthethweni.

  • Ukutolika : Sebenzisa amasu afana ne-saliency noma izichasiso zesici. Abaphelele, nokho bawusizo.

  • Ukuqapha : Setha izexwayiso zokwehla okungazelelwe kwemethrikhi noma ukukhukhuleka kwedatha.

  • Ukwengamela komuntu : Gcina abantu benolwazi mayelana nezinqumo ezinzima. Awekho amaqhawe, inhlanzeko nje.


Imibuzo evamise ukubuzwa obunayo ngokuyimfihlo 🙋

Ingabe inethiwekhi ye-neural iwubuchopho?

Igqugquzelwe ubuchopho, yebo - kodwa yenziwe lula. Ama-Neurons kumanethiwekhi ayimisebenzi yezibalo; ama-neuron e-biological amangqamuzana aphilayo anama-dynamics ayinkimbinkimbi. Amavayibhu afanayo, i-physics ehluke kakhulu [1].

Zingaki izendlalelo engizidingayo?

Qala kancane. Uma ungaphansi, engeza ububanzi noma ukujula. Uma ufaka ngokweqile, yenza ngokujwayelekile noma wehlise umthamo. Ayikho inombolo yomlingo; kukhona nje amajika okuqinisekisa nokubekezela [1].

Ingabe ngihlala ngidinga i-GPU?

Hhayi njalo. Amamodeli amancane kudatha enesizotha angaqeqeshwa kuma-CPU, kodwa ezithombeni, amamodeli ombhalo amakhulu, noma amasethi edatha amakhulu, izisheshisi zonga amathani esikhathi [1].

Kungani abantu bethi ukunaka kunamandla?

Ngoba ukunaka kuvumela amamodeli ukuthi agxile ezingxenyeni ezifanele kakhulu zokufakwayo ngaphandle kokumasha ngendlela eqinile. Ithwebula ubudlelwano bomhlaba wonke, okuwumsebenzi omkhulu wolimi nemisebenzi ehlukahlukene [3].

Ingabe "Iyini iNeural Network ku-AI?" ehlukile “kuyini ukufunda okujulile”?

Ukufunda okujulile kuyindlela ebanzi esebenzisa amanethiwekhi ajulile e-neural. Ngakho-ke ubuza ukuthi Iyini Inethiwekhi Ye-Neural ku-AI? kufana nokubuza ngomlingisi oqavile; ukufunda okujulile kuyifilimu yonke [1].


Amathiphu asebenzayo, anemibono kancane 💡

  • Khetha izisekelo ezilula kuqala. Ngisho ne-perceptron encane ye-multilayer ingakutshela ukuthi idatha ifundeka yini.

  • Gcina ipayipi ledatha yakho likwazi ukukhiqizwa kabusha . Uma ungakwazi ukuphinda uyiqalise, awukwazi ukuyethemba.

  • Izinga lokufunda libaluleke ngaphezu kokucabanga kwakho. Zama ishejuli. Ukufudumala kungasiza.

  • ukuhwebelana kosayizi weqoqo . Amaqoqo amakhulu azinzisa ama-gradient kodwa angase afane ngokuhlukile.

  • Uma udidekile, amajika okuncipha kanye nezinkambiso zesisindo . Ungamangala ukuthi kaningi kangakanani impendulo ezinkundleni zokuxhumana.

  • Imibhalo ecatshangelwayo. Ikusasa-ukhohlwa izinto - ngokushesha [1, 2].


I-deep-dive detour: indima yedatha, noma kungani udoti usasho ukuphuma kukadoti 🗑️➡️✨

Amanethiwekhi e-Neural awalungisi ngokumangalisayo idatha enamaphutha. Amalebula asontekile, amaphutha ezichasiselo, noma amasampula amancane azonanela ngemodeli. Curate, audit, and augment. Futhi uma ungenaso isiqiniseko sokuthi udinga idatha eyengeziwe noma imodeli engcono, impendulo ivame ukuba lula ngokucasulayo: kokubili - kodwa qala ngekhwalithi yedatha [1].


"Iyini iNeural Network ku-AI?" - izincazelo ezimfushane ongazisebenzisa kabusha 🧾

  • Inethiwekhi ye-neural iyi-approximator enezingqimba efunda amaphethini ayinkimbinkimbi ngokulungisa izisindo kusetshenziswa amasignali egradient [1, 2].

  • Kuyisistimu eguqula okokufaka kube okokukhiphayo ngezinyathelo ezingaqondile ezilandelanayo, eziqeqeshelwe ukunciphisa ukulahlekelwa [1].

  • Kuyindlela evumelana nezimo, elambile idatha echumayo kokokufaka okungahlelekile njengezithombe, umbhalo, nomsindo [1, 2, 3].


Yinde Kakhulu, Angifundanga kanye namazwi okugcina 🎯

Uma othile ekubuza Iyini Inethiwekhi Ye-Neural ku-AI? Nakhu okuzwakalayo: inethiwekhi ye-neural iyinqwaba yamayunithi alula aguqula idatha ngesinyathelo ngesinyathelo, ukufunda ukuguqulwa ngokunciphisa ukulahlekelwa nokulandela ama-gradient. Zinamandla ngoba ziyakala, zifunde izici ngokuzenzakalelayo, futhi zingamela imisebenzi eyinkimbinkimbi kakhulu [1, 4]. Ziyingozi uma uziba ikhwalithi yedatha, ukubusa, noma ukugadwa [5]. Futhi abawona umlingo. Izibalo nje, ikhompyutha, nobunjiniyela obuhle - ngokunambitha.


Ukufunda okwengeziwe, kukhethwe ngokucophelela (okungeziwe okungacaphuni)


Izithenjwa

[1] Goodfellow, I., Bengio, Y., & Courville, A. Ukufunda Okujulile . I-MIT Cindezela. Inguqulo yamahhala ye-inthanethi: funda kabanzi

[2] I-Stanford CS231n. I-Convolutional Neural Networks for Visual Recognition (amanothi esifundo): funda kabanzi

[3] Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Ukunakwa Yikho Konke Okudingayo . I-NeurIPS. arXiv: funda kabanzi

[4] Cybenko, G. (1989). Ukulinganisa ngama-superpositions omsebenzi we-sigmoidal . Izibalo Zokulawula, Izimpawu Nezinhlelo , 2, 303–314. Springer: funda kabanzi

[5] NIST. I-AI Risk Management Framework (AI RMF) : funda kabanzi


Thola i-AI yakamuva esitolo esisemthethweni somsizi we-AI

Mayelana NATHI

Buyela kubhulogi